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Abstract. Finding the safest pair of paths between two specified end-
points s and t while accounting for multiple correlated failures is a com-
plex computational challenge with various practical applications. In com-
munication backbone networks, for instance, establishing a secure pair of
paths between s and t is essential for meeting the high availability stan-
dards required by emerging technologies such as autonomous driving,
AR/VR applications, or telesurgery. This paper first provides a formal
proof of the NP-hardness of the task. Then, we introduce the Safest
Path Pair Ant Colony Optimization (SPP-ACO) algorithm. This new
algorithm is based on the Max-Min Ant System. Numerical tests carried
out on real-world datasets demonstrate the proposed method’s effective-
ness. The proposed SPP-ACO algorithm typically provides at least as
safe paths as the baseline, even outperforming it in a significant share
of the parameter settings. This grants a place for the SPP-ACO on the
stage of best solutions for safest path pair computation in the presence
of correlated failures.

Keywords: safest path pair · Ant Colony Optimization · correlated fail-
ures · Shared Risk Link Groups.

1 Introduction

The study of computational network problems has garnered significant interest
in recent decades due to their vast range of applications, such as critical node
detection in wireless ad hoc networks [21] or influence maximization in online
advertisements [13]. A concrete, well-explored issue is the challenge of finding
the shortest path between two nodes, s and t, within a graph G. When the
objective is to compute an st-path with the fewest edges, a straightforward
Breadth-First Search (BFS) can be employed. For graphs with non-negative edge
weights, Dijkstra’s algorithm [7] is the most effective solution, while the Bellman-
Ford algorithm [2] is well-suited for graphs with arbitrary weights. Going a step
further, one could search for a cheap pair of st-paths. For example, supposing
nonnegative lengths, finding a link or node-disjoint st-path pair of minimum
total length, one can use the highly scalable Suurballe’s algorithm [25], which is
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practically just as fast as a simple Dijkstra’s. Turning from shortest (or cheapest)
paths to safest st-paths, one can check that, in certain simple scenarios, they can
be computed by utilizing a shortest path finding subroutine, with some necessary
transformations. E.g., paper [32] explores such fortunate settings, one of these
being when the network element failures are independent of each other. However,
the situation becomes less clear when these failures are correlated, the general
case being NP-hard [28]. Based on this, it is hardly surprising that finding a
safest pair of st-paths in the presence of correlated network element failures
is also a computationally hard problem (see Thm. 1). The primary objective
of this study is to develop an efficient algorithm for finding a safest path pair
in the presence of correlated failures. Although our primary numerical inputs
are derived from communication backbone networks paired with seismic hazard
data, we believe that the algorithm proposed in this paper can be effectively
applied to a broad spectrum of problem inputs.

Safest paths and path pairs in backbone networks: Evaluating availability be-
tween two network nodes assuming independent single-element failures has a
long history [34,17,23,1]. Dealing with multiple failures in communication net-
works has its traditions, relying on the concept of Shared Risk Groups (SRGs)
(see [31] and references therein). Probabilistic extensions of SRLGs were also in-
vestigated [12,14,27]. We will use the unified terminology on probabilistic SRLGs
proposed by [30]. Much of the work in this field tackled disaster modeling more
heuristically in their own way to address their given problem in network plan-
ning. A more principled natural approach (also taken by this paper) is to take
the disaster scenarios as input [16], that have been carefully precomputed by
dedicated approaches, e.g., based on historical hazard data. By now, efficient
methods for computing and storing the correlated link failures are available [30].
These methods are already in use in complex frameworks for disaster resilience
[18,19]. From an algorithmic point of view, several variants of the problem of en-
suring high availability, and different solution concepts were proposed [33,10,5].
Notably, [3] gives a highly scalable algorithm, that, under specific circumstances,
finds a maximal number of SRG-disjoint paths. On the other hand, [4] proves
the NP-hardness of a similar problem formulation. Note that these latter prob-
lem formulations fail to handle algorithmically the case when there is no two
SRG-disjoint st-path (thus, the optimal availability of such a path pair necessar-
ily being lower than 1). Zooming out again, though considering link correlations
poses extra computational challenges, it can significantly better the service avail-
abilities and performance.

Nature-inspired algorithms [9] are novel problem-solving tools designed for hard
optimization problems.

Regarding the safest path pair problem studied in this article, to the best of
our knowledge, nature-inspired algorithms have not been investigated so far.

Ant Colony Optimization algorithm (ACO), designed for combinatorial op-
timization problems, is a good choice to solve network-related problems. For the
safest path problem, an ACO was adapted by the same authors [28].
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State-of-the-art works regarding ACO study different variants of the shortest
path problems: [15] describes an ant colony system for the shortest path problem,
where preferred edges can be used. In [11] an ACO is designed for the stochastic
shortest path problem, where edge weights can be noisy. The work [6] studies
the shortest path problem with fuzzy weights, presenting a fuzzy-based ACO.

The main contributions of the paper are as follows:

– We formalize and prove the NP-hardness of the problem of finding a safest
path pair in presence of correlated failures.

– We adopt the Ant Colony Optimization algorithm (ACO) to solve the prob-
lem.

The rest of the paper is organized as follows: in Sec. 2 the problem is defined
and NP-hardness is proven. Sec. 3 presents the proposed solving method, the
Safest Path Pair Ant Colony Optimization algorithm. The next Section presents
the numerical experiments conducted on real-world networks. Finally, Sec. 5
concludes the paper, and some future research possibilities are presented in this
Section.

2 Problem statement and computational hardness

2.1 Problem definition

The problem input consists of two main parts. One is a connected graph G =
(V,E), along with a communication source-target node pair {s, t} ⊆ V . The
other part of the problem input encodes the probabilities of joint failures of link
sets. For this, for a link set S ⊆ E, in line with [30,19], we define FP(S) (that
stands for ‘link failure state probability of S’) to denote the probability that
exactly link set S will fail at the next disaster. The second part of the input is
FP[G], which is a data structure containing all the FP(S) values, where we list
FP(S) only if FP(S) > 0. Note that in most of the natural settings, FP[G] has
a manageable size [30]. We note that albeit FP[G] stores only link failures, it
is suitable for implicitly storing node failure probabilities, too; see [30, Sec. V.].
The goal is to find a safest path pair among a node pair s and t, i.e., a pair of
st-paths P1 and P2 such that the chance of both P1 and P2 being cut by the
next disaster is minimal.

Below, we give a more formal definition of the above concept, followed by a
proof of NP-hardness of the decision version of the safest path problem. FP can
be defined as follows.

Definition 1 (Link Failure State Probability (FP)). Given a link set S ⊆
E, the link failure state probability (FP) of S, denoted by FP(S), is the probability
that exactly the links of S fail simultaneously (and no other links).

Note that if there is a disaster scenario that leads a set of links S to be listed
in FP[G], then all the subsets of S are subject to possible common failures. Since
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there are some optimization approaches that, for each link set T , take as input
the probabilities that at least the links in T will fail (and possibly some others
too), we will define the cumulative failure probability of link sets:

Definition 2 (Cumulative Failure Probability (CFP)). Given a link set
S ⊆ E, the cumulative failure probability (CFP) of S, denoted by CFP(S), is the
probability that all links in S fail simultaneously (and possibly other links too).

Again, it is easy to see that if for a link set S, CFP(S) > 0, then all the
2|S| − 1 non-empty subsets of S have to be stored in CFP[G]. Whenever it does
not cause confusion, we will refer as ‘FP’ to both 1) the tuple (S,FP(S)) for a
link set S, and 2) simply, to FP(S). The same goes for ‘FP’. Intuitively, FP[G]
and CFP[G] are interconnected in a similar way to the density and cumulative
density functions. Next, we define two interconnected versions of the safest path
pair finding problem with correlated link failures:

Problem 1: Safest Path Pair FP Problem - decision version
Input: A graph G = (V,E), nodes s and t, a threshold T , and failure
probabilities FP[G].

Question: Decide whether there exists such an st-path pair P and Q, from
which, after the next disaster, at least one remains intact with a probability
of at least T .

Problem 2: Safest Path Pair CFP Problem - decision version
Input: A graph G = (V,E), nodes s and t, a threshold T , and failure
probabilities CFP[G].

Question: Decide whether there exists such an st-path pair P and Q, from
which, after the next disaster, at least one remains intact with a probability
of at least T .

As we will see in Thm. 1 both problem variants are NP-hard. Consequently,
optimizing the availability of an st-path pair is a computationally hard problem.
But first, we depict the following example problem input.

Example 1. Fig. 1 depicts a simple example of the problem inputs, along with the
availabilities of each of the st-paths and st-path pairs. This example showcases
that a safest st-path may not be eligible in an st-path pair of highest availability.
In our case, despite that the availability of P2 = {g, h} being the maximal,
standing at 0.6 (exceeding the availabilities of the other paths significantly by
0.1), it trivially cannot be part of an optimal path pair since the following. Take
the pair of paths P2 and P1 = {e, f}. Then, since FP(e, g) = 0.2, together with
e ∈ P1, and g ∈ P2 means that the probability that t is available from s on at
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FP[G] :

FP(e, g) =0.2 FP(f) =0.3

FP(i) =0.3 FP(h, j) =0.2

CFP[G] :

CFP(e) =0.2 CFP(f) =0.3 CFP(g) =0.2

CFP(h) =0.2 CFP(i) =0.3 CFP(j) =0.2

CFP(e, g) =0.2 CFP(h, j) =0.2

Path Availability
of path Path pair Availability

of path pair
P1 := {e, f} 0.5 P1 + P2 0.8

P2 := {g,h} 0.6 P1 +P3 1

P3 := {i, j} 0.5 P2 + P3 0.8

Fig. 1: A toy example on the input graph G, related failure probabilities stored in
either FP[G] or CFP[G]. The table included depicts the availabilities of each st-path
and each st-path pair. Although path P2 is the safest, it is not part of any safest path
pair.

least one of P1 and P2 is upper bounded by 1−FP(e, g) = 0.8. In fact, since there
is no other failure state that intersects both P1 and P2, Ast(P1, P2) = 0.8. For
similar reasons, we also have Ast(P2, P3) = 0.8. On the other hand, though, there
is no failure state in this example that would cut both P1 and P3. This means
that, after the next single disaster event, there exists a connection between s
and t through either P1 or P3 with probability 1.

2.2 NP-hardness

Theorem 1. Problems Safest Path Pair FP and Safest Path Pair CFP (Prob-
lems 1 and 2) are NP-hard.

Proof. To prove the NP-hardness of the problems, we use a reduction to the
safest (single) st-path problems as defined in [28] (using either FP[G] or CFP[G]
as input). Our reduction is very straightforward, and it is intuitively depicted
in Fig. 2. To put it briefly, the degree of both s and t is 2, s′ and s′′ being the
neighbors of s, while t′ and t′′ being the neighbors of t. Intuitively, we consider
that between s′ and t′, there is a safest (single) s′t′-path problem instance as
defined in [28]; and between s′′ and t′′ we consider the same safest path instance
I. More precisely, if in the single safest path problem instance there is a link set
with FP(S) > 0, then, in the transformed problem version, we set FP(S′∪S′′) :=
FP(S), where S′ and S′′ are the image of S in the problem instances between
pairs s′t′ and s′′t′′, respectively. We can define the reduction using CFP similarly.
Then, based on our construction and the proof of [28, Thm 2.4], it is NP-hard
to decide whether there exists an st-path pair that has an availability of at least
1/2. The proof follows. □
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s t

s′ t′

s′′ t′′

Safest path problem instance I as defined in [28] (NP-hard)

The same safest path problem instance I

Fig. 2: Intuitive illustration for the proof of NP-hardness.

We note that the construction used by the above proof underpins the intuition
that computing a safest st-path pair is at least as hard as computing a single
safest st-path.

3 Safest Path Pair Ant Colony Optimization Algorithm -
SPP-ACO

The ant colony optimization algorithm - first proposed in [8] - is a powerful op-
timization tool for graph-based computational problems, based on the metaphor
of the ants behavior: ants communicate indirectly based on the pheromones they
leave behind them. An ACO algorithm finds the optimal solutions by the virtue
of the aforementioned pheromones. Initially, the ants only have a local under-
standing of the problem provided by the heuristic information, but over time,
due to an aspect of randomness, they will find alternative paths. If any alterna-
tive paths prove to be better, then the pheromones laid will be stronger, more
ants will discover that route, thus the algorithm gains a better global under-
standing of the problem. In this article, we adopted the Max-Min Ant System
[24] algorithm, which controls the maximum and minimum pheromone level on
trails.

In this section, we present the basic elements of the ACO algorithm: heuristic
information, pheromone setting, and solution generation. In our algorithm, the
heuristic information is defined as the negative logarithm of the failure probabil-
ity associated with a given edge, considering only individual edge probabilities.
If an edge does not have an explicitly assigned probability, we assign it a small
default value ϵprob > 0, as the logarithm of zero is undefined. This value is se-
lected to be significantly smaller than any failure probability in the original set
CFP[G]; specifically, we used ϵprob = 10−8 in our experiments. Furthermore, if
two nodes are not directly connected (i.e., they are not neighbors), the heuris-
tic information is set to zero to ensure that such edges are not considered by
the ants. This behavior is formalized in Eq. (1), where Ni denotes the set of
neighbors of node i, and ei,j represents the edge connecting nodes i and j.

ηij =

{
− logCFP({ei,j}), if j ∈ Ni

0, else. (1)

The pheromone limitations (τmax and τmax) are chosen based on the following
formulas:

τmax = fgb/(1− ρ), τmin = ϵ · τmax, (2)
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where fgb is the fitness of the best solution, ρ is the evaporation coefficient, and
ϵ denotes the pheromone proportion coefficient.

The combination of pheromone placement and evaporation is described in
Eq. (3), where τij is the pheromone level between nodes i and j:

τ
(t)
i,j =

{
(1− ρ) · τ (t−1)

ij , if nodes i, j are not on the best route.
(1− ρ) · τA(t−1)

ij − log (1−A(P )), if nodes i, j are on the best route.
(3)

The transition probabilities guiding the ant’s movement are computed as de-
scribed in Eq. (4), where τij represents the pheromone level on the edge between
nodes i and j, ηij denotes the heuristic information for the same edge, and Ni

is the set of neighbors of node i.

p(i, j) =
(τij)

α(ηij)
β∑

vq∈Ni
(τiq)α(ηiq)β

, if vj ∈ Ni (4)

The SPP-ACO algorithm works as follows. First, we duplicate each node and
edge into a second component in the graph and connect the two components
through the original target node and its copy. Then we set the copy of the
starting node as the new target. After this, all ants are placed in the starting
point s. Based on the heuristic information and pheromone level, they choose
the next node. Nodes can be visited at most once; the last visited node must
be t. The algorithm iteratively executes the following steps until the stopping
criterion—defined as reaching the maximum number of iterations—is met. In
each iteration, the global and iteration-best paths are determined. Based on
these, new pheromone limits are computed, and on the best path, pheromone
level is increased, while pheromone on edges not included in this path evaporates
at a constant rate. This process is summarized in Algorithm 1.

Regarding the path generation method, if an ant cannot reach the endpoint,
no path will be returned. The path generation algorithm is detailed in [28].

After the algorithm finds a solution, in order to assess its fitness, it has to
transform the path on the duplicated graph back into a path pair on the original
graph. Since the duplicated part of the graph corresponds one-to-one to the
original part just with offset indices, it is enough to leave out the edge that
connects the two components and subtract |V | from each node in the second
part of the path to get to a path on the original graph, while retaining the first
part as the other.

4 Numerical experiments

4.1 Simulation settings

Benchmarks For benchmarks, we use four real-world settings3: the 22_optic
network [26] has 22 nodes and 45 edges, the Italy network (a.k.a. interroute_v2)
3 https://github.com/jtapolcai/regional-srlg/blob/master/psrlg/JSACdata.zip

https://github.com/jtapolcai/regional-srlg/blob/master/psrlg/JSACdata.zip
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Algorithm 1: Shortest Path Pair-AntColonyOptimization(SPP-ACO)
Input: Graph G = (V,A), cumulative failure probabilities CFP[G], ACO

parameters: α, β, ρ, ϵ,nrOfAnts; nrOfIterations, nodes s and t
Output: A safest st-path pair
Duplicate graph G into G′

Connect G and G′ through t and t′

t := s′

Initialize pheromone trails
i := 0
while i < nrOfIterations do

S := ∅
repeat

Construct a new path P from s to t
S := S ∪ {P}

until |S| = nrOfAnts;
Calculate the iteration-best and global-best paths: Pib and Pbest,
respectively

Compute pheromone trail limits (τmin, τmax) based on Eq. (2)
Update pheromone trail on Pib based on Eq. (3)
i := i+ 1

return Pbest

[29] contains 25 nodes and 34 edges, the cost266 network has 37 nodes and 57
edges, while the janos_us network [26] has 26 nodes and 42 edges. The failure
data used for numerical experiments for each network is taken from [30].

Parameter tuning To test the proposed SP-ACO algorithm4, we run a pa-
rameter test for the following four parameters: α ∈ {0.5, 1, 1.5}, β ∈ {0.5, 1, 1.5},
ϵ ∈ {0.1, 0.3}, and ρ ∈ {0.1, 0.3}. The number of ants was fixed to 25, and the
total number of iterations was set to 50. The parameter tuning was performed
on a real-world network, the Italy graph with intensity tolerance 6.5 Totally 36
combinations of parameters were analyzed; but due to the sheer amount of data,
only some representative cases have their numerical results presented in Table 1.
To get a comprehensive picture of the results, we used two methods: Wilcoxon
tests to assess whether the samples differ in a statistically significant way and a
chess tournament comparison to rank the configurations.

Twenty independent runs were conducted; mean values, standard deviation,
and maximum values are reported. Based on the numerical results, there were
multiple configurations with similar results, but in the end configuration 21 was
selected for further experiments, which means α = 1.5, β = 0.5, ρ = 0.1, ϵ = 0.3.

4 Available at: https://github.com/VaranTavers/safest_route_pair_jl.
5 Measured according to the Mercalli-Cancani-Sieberg (MCS) scale [22] that is used in

Italy to measure the intensity of shaking at any given location due to an earthquake.
The MCS scale ranges from 1 to 12. An intensity of ≥ 6 may cause structural damage.

https://github.com/VaranTavers/safest_route_pair_jl
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Table 1: Results of parameter tuning (20 independent runs) on some node-pairs of the
italy graph (intensity tolerance 6) containing the mean, standard deviation (out of 50
generations).

nr α β ρ ϵ italy (0,7) italy (1, 17) italy (2, 14) italy (3, 15) italy (18, 23)
1 0.5 0.5 0.1 0.1 5.772± 0 5.756± 0.045 6.268± 0.045 5.218± 0.013 4.524± 0.011
2 1 0.5 0.1 0.1 5.772± 0 5.788± 0 6.299± 0 5.21± 0.069 4.53± 0
3 1.5 0.5 0.1 0.1 5.772± 0 5.723± 0.168 6.299± 0 5.164± 0.126 4.527± 0.009
4 0.5 1 0.1 0.1 5.772± 0 5.748± 0.045 6.273± 0.041 5.221± 0.011 4.523± 0.009
5 1 1 0.1 0.1 5.772± 0 5.788± 0 6.299± 0 5.226± 0 4.529± 0.007
6 1.5 1 0.1 0.1 5.772± 0 5.772± 0.039 6.299± 0 5.226± 0 4.526± 0.011
7 0.5 1.5 0.1 0.1 5.772± 0 5.756± 0.049 6.285± 0.035 5.219± 0.016 4.516± 0.012
8 1 1.5 0.1 0.1 5.772± 0 5.783± 0.024 6.299± 0 5.226± 0 4.527± 0.009
9 1.5 1.5 0.1 0.1 5.772± 0 5.736± 0.119 6.299± 0 5.226± 0 4.519± 0.038
10 0.5 0.5 0.3 0.1 5.772± 0 5.746± 0.049 6.285± 0.034 5.22± 0.015 4.525± 0.01
11 1 0.5 0.3 0.1 5.772± 0 5.788± 0 6.299± 0 5.226± 0 4.527± 0.009
12 1.5 0.5 0.3 0.1 5.772± 0 5.739± 0.131 6.299± 0 5.164± 0.126 4.521± 0.023
13 0.5 1 0.3 0.1 5.772± 0 5.757± 0.046 6.291± 0.024 5.22± 0.012 4.524± 0.009
14 1 1 0.3 0.1 5.772± 0 5.783± 0.024 6.299± 0 5.226± 0 4.529± 0.007
15 1.5 1 0.3 0.1 5.772± 0 5.704± 0.175 6.299± 0 5.195± 0.094 4.523± 0.013
16 0.5 1.5 0.3 0.1 5.772± 0 5.773± 0.03 6.295± 0.018 5.223± 0.007 4.526± 0.008
17 1 1.5 0.3 0.1 5.772± 0 5.783± 0.024 6.299± 0 5.226± 0 4.526± 0.011
18 1.5 1.5 0.3 0.1 5.772± 0 5.733± 0.132 6.299± 0 5.19± 0.096 4.485± 0.071
19 0.5 0.5 0.1 0.3 5.772± 0 5.682± 0.052 6.204± 0.077 5.194± 0.027 4.512± 0.017
20 1 0.5 0.1 0.3 5.772± 0 5.767± 0.041 6.287± 0.029 5.215± 0.015 4.525± 0.006
21 1.5 0.5 0.1 0.3 5.772± 0 5.788± 0 6.299± 0 5.226± 0 4.53± 0
22 0.5 1 0.1 0.3 5.772± 0 5.692± 0.055 6.207± 0.118 5.198± 0.028 4.501± 0.026
23 1 1 0.1 0.3 5.772± 0 5.764± 0.042 6.287± 0.029 5.223± 0.007 4.523± 0.009
24 1.5 1 0.1 0.3 5.772± 0 5.788± 0 6.299± 0 5.226± 0 4.53± 0
25 0.5 1.5 0.1 0.3 5.772± 0 5.73± 0.052 6.225± 0.064 5.194± 0.021 4.507± 0.018
26 1 1.5 0.1 0.3 5.772± 0 5.771± 0.037 6.291± 0.025 5.22± 0.01 4.523± 0.01
27 1.5 1.5 0.1 0.3 5.772± 0 5.788± 0 6.299± 0 5.226± 0 4.53± 0
28 0.5 0.5 0.3 0.3 5.772± 0 5.682± 0.044 6.168± 0.11 5.194± 0.026 4.51± 0.02
29 1 0.5 0.3 0.3 5.772± 0 5.756± 0.046 6.283± 0.032 5.219± 0.012 4.527± 0.006
30 1.5 0.5 0.3 0.3 5.772± 0 5.783± 0.024 6.299± 0 5.226± 0 4.53± 0
31 0.5 1 0.3 0.3 5.772± 0 5.724± 0.09 6.199± 0.087 5.204± 0.018 4.498± 0.034
32 1 1 0.3 0.3 5.772± 0 5.764± 0.046 6.287± 0.029 5.223± 0.007 4.528± 0.005
33 1.5 1 0.3 0.3 5.772± 0 5.783± 0.024 6.299± 0 5.226± 0 4.527± 0.009
34 0.5 1.5 0.3 0.3 5.772± 0 5.72± 0.061 6.22± 0.102 5.204± 0.018 4.5± 0.017
35 1 1.5 0.3 0.3 5.772± 0 5.76± 0.042 6.293± 0.026 5.222± 0.01 4.527± 0.006
36 1.5 1.5 0.3 0.3 5.772± 0 5.782± 0.024 6.299± 0 5.226± 0 4.526± 0.011

Comparisons with other methods To evaluate the relative performance
of the proposed algorithm, we compare it with two algorithms: a strawman
approach and a simple genetic algorithm.

For a given source-target pair s and t, the strawman (baseline) algorithm
first computes a cheapest st-path P1 using Dijkstra’s algorithm, where for each
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Table 2: Results of the SPP-ACO on all benchmark networks using two intensity
tolerances (it6 and it7) compared to the baseline implementation. First three numerical
columns indicate that mean values how many times where worst (<), the same (=) or
better (>) than the baseline algorithm, while next three column values indicate the
numbers of the best result obtained in 20 independent runs were worse (<), the same
(=) or better (>) than the baseline algorithm.

mean max
A
(
PSPP-

ACO

)
A
(
PSPP-

ACO

)
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(
PSPP-

ACO

)
A
(
PSPP-

ACO

)
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(
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ACO

)
A
(
PSPP-

ACO

)
Network < = > < = >

A(Pbaseline) A(Pbaseline) A(Pbaseline) A(Pbaseline) A(Pbaseline) A(Pbaseline)

22_optic_it6 30 15 186 0 45 186
22_optic_it7 13 22 196 0 26 205

italy_it6 1 87 212 0 88 212
italy_it7 6 97 197 0 103 197

cost266_it6 36 31 599 0 59 607
cost266_it7 63 64 539 1 125 540

janos_us_it6 17 55 253 0 72 253
janos_us_it7 20 37 268 0 57 268
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(a) Path pairs generated by SPP-ACO (dotted),
and the baseline (dashed) between Rome (id 0)
and Bari (id 2).

(b) Historical earthquakes from
Italian catalog [20]. Mw = mo-
ment magnitude.

Fig. 3: Based on the seismic hazard data distilled from an Italian historical catalog,
the SPP-ACO detours one of the paths between the nodes of Rome (id 0) and Bari (id
2) to cross Sardinia and Sicily. Intuitively, this maximizes the probability that at least
one of the paths remains intact when an earthquake strikes between Rome and Bari.
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Table 3: Results of the SPP-ACO on all benchmark networks using one intensity
tolerance (it6) compared to the SPP-GA. First three numerical columns indicate that
mean values how many times where worst (<), the same (=) or better (>) than the
mean of the GA algorithm, while next three column values indicate the numbers of the
best result obtained in 20 independent runs were worse (<), the same (=) or better
(>) than the SPP-GA.

mean max
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(
PSPP-

ACO

)
A
(
PSPP-

ACO

)
A
(
PSPP-

ACO

)
A
(
PSPP-

ACO

)
A
(
PSPP-

ACO

)
A
(
PSPP-

ACO

)
Network < = > < = >

A
(
PSPP-

GA

)
A
(
PSPP-

GA

)
A
(
PSPP-

GA

)
A
(
PSPP-

GA

)
A
(
PSPP-

GA

)
A
(
PSPP-

GA

)
22_optic_it6 131 58 42 1 231 0
22_optic_it7 132 63 37 0 232 0

italy_it6 4 99 207 0 297 3
italy_it7 3 105 202 0 299 1

cost266_it6 210 122 334 45 661 10
cost266_it7 337 143 186 63 603 0

janos_us_it6 39 85 201 3 314 8
janos_us_it7 59 81 185 6 312 7

edge e, its cost c(e) is set to CFP(e). Then, a second st-path P2 is calculated,
also using a Dijkstra, but with a modified cost function c′, where for each edge
e that is not part of P1, c′(e) := c(e), while for e ∈ P1, c′(e) := c(e) + 1. The +1
ensures that this edge will not be chosen unless absolutely necessary. In this way,
each of the resulting paths P1 and P2 is reasonably safe, and as a tuple, they
have ‘few’ edges in common, making the output of this approach a reasonable
naive solution to the problem.

The genetic algorithm (SPP-GA) assigns integer codes to the edges of each
FP with three possible values: 1- allowed to be part of the first path, 2- allowed
to be part of the second path, 0- not part of any path. The fitness function
is the same as for the ACO algorithm. Regarding the used operators uniform
crossover is used and random resetting mutation. For parent selection roulette
wheel selection is used and the survivals are selected with elitist selection. The
parameters used for this algorithm are the following: 100 generations, population
size is 50, mutation rate of 0.3, and cross-over rate of 0.9.

Results and discussion Tables 2 and 3 present the obtained results for the
benchmark real-world networks. For each network, two variants were considered
with two different values of intensity tolerance. For the SPP-ACO algorithm, 20
independent runs were conducted for each node pair st. Considering the mean
values, our proposed algorithm outperformed the baseline method in most of the
cases: from a total of 3044 tests, the SPP-ACO outperformed the baseline method
in 80.59% of the total cases, and in 16.65% the same results were obtained.
Regarding the comparisons with the SPP-GA, our algorithm outperformed the
SPP-GA in (considering the mean values) in 45.79% of the total cases, and in
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24.83% the same results were obtained. Figure 3 presents visually the detected
path pairs between Rome and Bari.
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Fig. 4: Runtimes of the three algorithms presented in [sec] plotted against the density
in the tested graphs (with intensity tolerance 6) for a single st pair, averaging 20 runs.

Runtime analysis All three algorithms were implemented in Julia, therefore a
runtime comparison was straightforward. The times were measured for all four
networks between a randomly chosen st pair, 20 independent runs were con-
ducted. The results are presented in Figure 4. As a general conclusion, it can be
clearly established that the SPP-ACO algorithm is slower than the greedy-based
baseline method and the genetic algorithm, but this behavior aligns with the gen-
eral expectation regarding the runtime differences between nature-inspired and
greedy algorithms.

5 Conclusions and future work

As proved above, the safest path pair computation problem, where multiple cor-
related failures can appear, is a challenging NP-hard optimization problem with
several application possibilities, for example, in determining vulnerable network
parts. In this article, we propose the Safest Path Pair Ant Colony Optimization
algorithm (SPP-ACO) to solve the problem. To guide the ants the network is ex-
tended, and problem-specific information is introduced in the heuristic function.
Numerical experiments were conducted on real-world problems, and comparisons
with a baseline method were performed. Results prove the effectiveness of the
proposed approach.

Future work will address the adaptation of other nature-inspired algorithms
for the proposed problem, parallelization of the proposed algorithm, and the
study of hybrid variants of the algorithm. From a problem-specific point of view
further work will address other variants of the problem, for example cascading
failures.
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